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Topic:

I Optimal mass transport problems under various linear and
non-linear constraints, especially when the underlying space has
arbitrary dimension.

I We discover that optimal embeddings often exhibit a certain
extremal geometric structures in higher dimensions.
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Optimal Martingale Transport Problem

I Borel probability measures µ, ν on Rd in convex order: µ ≤c ν

I (continuous) cost function c : Rd × Rd → R

I MT (µ, ν): probability measures π on Rd × Rd which not only project to
the marginals µ, ν, but also its disintegration (πx )x∈Rd has barycenter at
x (martingale constraint)

I Disintegration = Conditional probability: πx (A) = P(Y ∈ A|X = x).

Study the optimal solutions of the maximization / minimization problem

max /minπ∈MT (µ,ν)

∫
Rd×Rd

c(x , y)dπ(x , y).



Equivalent probabilistic statement of the problem

I (Ω,F ,P) : probability space
I X : Ω→ Rd , Y : Ω→ Rd : random variables
I (continuous) cost function c : Rd × Rd → R
I Law(X ) = µ, Law(Y ) = ν

I E(Y |X ) = X .

Study the one-step martingales (stocks) (X ,Y ) with prescribed marginals,
which maximize / minimize the expected cost (option price)

max /minX∼µ,Y∼ν,E(Y |X)=X EPc(X ,Y ).

Problem: If π := (X ,Y ) is an optimal solution, what can one deduce about
its conditional distribution πx (A) := P(Y ∈ A|X = x)?
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1-dimensional results
Literature

I Model-Independent Finance connected to the Skorokhod embedding
problem

Hobson, Obłój, Cox, . . .

I Martingale optimal transport

Hobson - Neuberger, Beiglböck - Henry-Labordere - Penkner, Galichon -
Henry-Labordere - Touzi, . . .

Theorem (Hobson-Neuberger, Beiglböck-Juillet ’13)
Let c(x , y) = |x − y | and d = 1 (In financial term, this means that the option
|X − Y | depends only on one stock process), and assume µ is dispersed
(µ << L1). Then the optimal martingale transport π is unique for any given ν,
and it exhibits an extremal property: for each x ∈ R, the conditional
probability πx is concentrated at two boundary points of an interval.

Question: What is a right generalization of this theorem in higher dimension?



First conjecture in higher dimensions. [Ghoussoub, Kim & L. ’15]

Assume:

I c(x , y) = |x − y |
I µ << Ld

I π ∈ MT (µ, ν) be optimal.

Conjecture: Then for µ almost every x, the
conditional probability πx is concentrated on
the extreme points of the convex hull of its
support:

suppπx = Ext
(
conv(suppπx )

)

 



Dual formulation

I We consider a triple (α, β, γ), α : Rd → R, β : Rd → R, γ : Rd → Rd ,
such that the following martingale duality relation holds:

|x − y | ≤ α(x) + β(y) + γ(x) · (y − x). (0.1)

I (α, β, γ) is called a dual optimizer if it solves∫
Rd
α(x)dµ(x) +

∫
Rd
β(y)dν(y) = max

π∈MT (µ,ν)

∫
Rd×Rd

|x − y |dπ(x , y).

I No regularity is assumed on the dual triple (α, β, γ).
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Conjecture holds if the dual problem is attained

Theorem (Ghoussoub, Kim & L. ’15)
Suppose that µ << Ld and a dual optimizer exists. Then for µ a.e. x,

suppπx = Ext
(
conv(suppπx )

)
.

Remark: The proof is based on a variational argument which requires
differentiability of the dual. Thus, the following regularity theory is crucial.

Theorem (Ghoussoub, Kim & L. ’15)
Suppose there exists a dual optimizer (α, β, γ). Then one can improve their
regularity and define another dual optimizer (α, β, γ) such that

I α is locally Lipschitz so it is differentiable a.e., and
I γ is differentiable at points where α is differentiable.
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How to improve regularity? Martingale c-Legendre transform
I In the standard optimal transport problem, given a function β : Rd → R

and a cost c(x , y), we define the Legendre transform

βc(x) := inf
y∈Rd
{c(x , y)− β(y)}

which is "the best companion" of β, for the following duality relation:

c(x , y) ≥ β(y) + βc(x)

I Likewise, in the martingale transport problem, given β : Rd → R, we
define the martingale Legendre transform

βc(x) = (α(x), γ(x)), where α : Rd → R, γ : Rd → Rd

which is "the best companion" of β, for the following martingale duality
relation:

c(x , y) ≥ β(y) + α(x) + γ(x) · (y − x)

I Conversely, given (α, γ), we define the inverse martingale Legendre
transform β : Rd → R.
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Drawback: dual problem is NOT always attained

I There are optimal martingales which do not admit a dual optimizer, and
this phenomenon makes the martingale optimal transport problem
fundamentally different from the standard transport problem.

I Careful study of the structure of optimal π ∈ MT (µ, ν) is required.



Canonical decomposition of optimal martingale transport

Theorem (Ghoussoub, Kim & L. ’15)
Given an optimal π ∈ MT (µ, ν), we can associate a canonical family of
disjoint convex sets {C}C∈I such that

I C’s are maximal: C ∩ conv(supp(πx )) 6= ∅ ⇒ conv(supp(πx )) ⊂ C,
I π is concentrated on

⋃
C∈I(C × C), and

I π restricted on each C × C attains a dual optimizer.

Remark:
I Thanks to the decomposition theorem, if µ restricted on each component

C is absolutely continuous, then by the previous regularity theory we can
conclude the conjecture.

I However, based on the Nikodym set in R3 constructed by Ambrosio,
Kirchheim, and Pratelli, we can construct an optimal π whose
decomposition is singular, making the conjecture still open in d ≥ 3.
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Some consequence of the Decomposition theory
Theorem (Dimension reduction. Ghoussoub, Kim & L. ’15)
Let µ << Ld and π ∈ MT (µ, ν) be optimal (Duality is not assumed). Then

dim(supp(πx )) ≤ d − 1 for µ-a.e. x.

Theorem (Discrete target. Ghoussoub, Kim & L. ’15)
Furthermore, if ν is discrete (i.e. ν is supported on a countable set), then

x 7→ d + 1 vertices of a d-dimensional simplex in Rd .

Moreover, the optimal solution is unique.
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Some consequence of the Decomposition theory

Theorem (Conjecture is true in R2. Ghoussoub, Kim & L. ’15)
Let µ << L2 and π ∈ MT (µ, ν) be optimal (Duality is not assumed). Then

suppπx = Ext
(
conv(suppπx ) for µ a.e. x.

Theorem (Conjecture is true in Rd if µ, ν are in strong order. GKL. ’15)
Let µ << Ld , d ≥ 3 and π ∈ MT (µ, ν) be optimal. Let Pµ and Pν be the
Newtonian potential functions of µ and ν respectively, and suppose

Pµ(x) ≤ Pν(x), ∀x ∈ Rd .

Let U := {x : Pµ(x) < Pν(x)} and suppose U is open and µ(U) = 1. Then

suppπx = Ext
(
conv(suppπx )

)
for µ a.e. x.
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More explicit structure in some special cases
Theorem (Minimization problem under radial symmetry. L. ’15)
Assume

I µ and ν are radially symmetric on Rd

I µ << Ld , µ ∧ ν = 0
I π is a minimizer.

Then for µ a.e. x, πx is concentrated on two points which lie on the
one-dimensional subspace spanned by x. Furthermore, π is unique.

Theorem (Discrete target. Ghoussoub, Kim & L. ’15)
If ν is discrete (but NO symmetry is assumed on µ and ν), then

x 7→ d + 1 vertices of a d-dimensional simplex in Rd .
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Different characteristics between the solutions of Max and Min problem

Remark:
I In the maximization problem, even under the symmetry assumption

neither the simplex-type fine structure nor uniqueness of optimal solution
can be expected.

I We need to understand why the solutions of the maximization and
minimization problems behave fundamentally different, which is also a
very interesting analytic / geometric aspect of in optimal martingale
transport problem in higher dimensions.
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Second conjecture in higher dimensions. [Ghoussoub, Kim & L.
’15]

Assume:

I c(x , y) = |x − y |
I µ << Ld , µ ∧ ν = 0
I π ∈ MT (µ, ν) be optimal for the

minimization problem.

Conjecture 2 (Minimization):
Then for µ almost every x,

suppπx = vertices of a k -dim’l simplex.

The conditional probability πx concentrates
on k + 1 points that form the vertices of a
k -dimensional polytope, where k = k(x).
Therefore, the minimizing solution is unique.

 



Conclusion:

I Analytical mass-transport approach along with Choquet theory can
bring new light on the classical ebbedding problems in probability
and give new interpretations from financial point of view.

I As the classical optimal transport theory (in higher dimensions)
has made important contributions to many areas of mathematics
and economics, I believe that this new development of probabilistic
optimal embedding theory in higher dimensions will have
far-reaching consequences as well.
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Thank You Very Much!


